

Course structure and syllabus of

B.Sc. BOTANY

Semester I and II

Under NEP Regulations

2024 ONWARDS

(DEEMED TO BE UNIVERSITY) MANGALURU 575003 – INDIA

School of Life Sciences

BOS MEETING

BOS meeting of School of Life Sciences was held on 22th April 2024, at 9.30 am in Applied Biology Laboratory

LIST OF MEMBERS OF THE BOS IN LIFE SCIENCES

Sl no	Members with Address	Designation
1.	Dr Hemachandra	Dean,
	hemachandra_amin@staloysius.edu.in	School of Life
	9035961509	Sciences
2.	Dr Renita Maria Dsouza	Associate Dean,
	renita@staloysius.edu.in	School of Life
	9945923172	Sciences
3.	Dr Lyned Dafny Lasrado	Assistant Dean,
	lyneddafny@staloysius.edu.in	School of Life
	9686021928	Sciences
4.	Dr Jyothi Miranda	Professor
	Department of Botany	
	jyothi@staloysius.edu.in	
	7022560938	
5.	Dr Asha Abraham	Associate Professor
	Department of Post Graduate Studies & Research	
	in Biotechnology	
	drashaabraham@staloysius.edu.in	
	9449555802	
6.	Dr Hariprasad Shetty	Associate Professor
	Department of Zoology	
	shettyhariprasad@staloysius.edu.in	
	9945886947	
7.	Dr S N Raghavendra	Assistant Professor
	Department of Post Graduate Studies & Research	
	in Food Science	
	raghavendra_sn@staloysius.edu.in	
	9945888845	
8.	Dr Santhosh Wilson Goveas	Assistant Professor
	Department of Post Graduate Studies & Research	
	in Biotechnology	
	santhoshgoveas@staloysius.edu.in	
	9448724682	
9.	Dr Chandrashekara G Joshi	Subject expert in
	Chairperson	Biochemistry

	Department of Biochemistry	
	Mangalore University	
	josheejoshee@gmail.com	
	9448446641	
10.	Dr Shyama Prasad Sajankila	Subject expert in
10.		
	Department of Biotechnology	Biotechnology &
	NMAMIT, Nitte, Karkala	Microbiology
	shyama.sajankila@nitte.edu.in	
	9611202842	
11.	Dr Smitha Hegde	Subject expert in
	Professor & Deputy Director	Biotechnology &
	NUCSER, Nitte University	Zoology
	Deralakatte	
	smitha.hegde@nitte.edu.in	
	9886036077	
12.	Dr Archana Prabhat	Subject expert in
	Professor & Coordinator	Food Science
	Department of PG Studies in Food Science &	
	Nutrition	
	Alva's College (Autonomous), Moodbidri	
	drarchanaprabhat@gmail.com	
	9986665759	
13.	Dr Giby Kuriakose	Subject expert in
	Assistant Professor	Botany
	PG Department of Botany, Sacred Heart College	·
	Kochi, Kerala-670106	
	giby.kuriakose@shcollege.ac.in	
	7012608038	
14.	Dr Shreelalitha Suvarna	HOD
	Assistant Professor	UG & PG
	shreelalitha_suvarna@staloysius.edu.in	Biotechnology
	9964215205	
15.	Dr Swarnalatha	HOD
	Assistant Professor	UG & PG
	swarnalatha@staloysius.edu.in	Biochemistry
	9900284662	210011111011
16.	Mrs. Shilpa B	HOD Botany
100	Assistant Professor	Tiob Botting
	shilpa_botany@staloysius.edu.in	
	9535887279	
17.	Dr Daniella Ann L Chyne	HOD
1/.	Assistant Professor	UG & PG Food
		Science
	daniella_chyne@staloysius.edu.in	SCIENCE
10	9676389466	HOD Minus Is 1
18.	Dr Vaishali Rai	HOD Microbiology
	Assistant Professor	
	vaishali_rai@staloysius.edu.in	
	9980313361	

I SEMESTER

Paper	Paper Instructions hours/ week		Duration of exam	Marks		Total	Credits
	Theory	Practical	hours	CIA*	Exam	Marks	
Paper code							
(Theory)	4	-	2.5	40	60	100	4
MICROBIAL DIVERSITY							
AND TECHNOLOGY							
Paper code							
(Practical)	-	4	3	25	25	50	2
MICROBIAL DIVERSITY							
AND TECHNOLOGY							
Paper code							
(Open Elective)	3	-	2.5	40	60	100	3
PLANTS FOR HUMAN							
WELFARE							

^{*}Continuous internal assessment

II SEMESTER

Paper	Instructions hours/ week		Duration of exam	Marks		Total Marks	Credits
	Theory	Practical	nour	CIA*	Exam		
Paper code							
(Theory)	4	-	2.5	40	60	100	4
DIVERSITY OF							
NON- FLOWERING							
PLANTS							
Paper code (Practical)							
DIVERSITY OF	-	4	3	25	25	50	2
NON- FLOWERING							
PLANTS							
Paper code							
(Open Elective)	3	-	2.5	40	60	100	3
PLANT							
PROPAGATION,							
NURSERY							
MANAGEMENT							
AND GARDENING							

^{*}Continuous internal assessment

PROGRAMME OUTCOMES (PO)

By the end of this programme, students will be able to

PO1: Enhance their knowledge in the field of Botany and are able to handle laboratory equipment and experimentation for higher education leading to research.

PO 2: Get an opportunity in further studies, research and employment in various areas of plant sciences.

PO 3: Enhance the scope of employability by obtaining all-round knowledge in the allied subjects along with Botany.

PO 4: Equip themselves for competitive examinations.

PO 5: Promote and popularize the study of Botany for its importance and its social relevance.

PO 6: Inculcate an interest for nature and the need to preserve the nature by maintaining green house, herbal gardens in the campus and environs.

I Semester B.Sc. Botany

Core Course Content

(Paper Code) Microbial Diversity and Technology

Credits: 4 Total hours: 56

Course outcomes

At the completion of this course, students will be able to

CO1: Disseminate the fascinating diversity, evolution, and significance of microorganisms.

CO2: Comprehend the systematic position, structure, physiology and life cycles of microbes and their impact on humans and environment.

CO3: Operate microscopy, microbial cultures, staining, identification and preservation of microbes.

CO4: Apply the principles and techniques in research and industry.

UNIT 1: Microbial diversity, history, development of microbiology and Microscopy 14 Hours

Introduction to microbial diversity; Hierarchical organization and positions of microbes in the living world: Whittaker's five-kingdom system and Carl Richard Woese's three-domain system. Habitats of microbes: soil, air, food and water. Significance of microbes. Microbiologists and contributions of Louis Pasteur, Robert Koch, other major contributions of Leeuwenhoek, Joseph Lister, Dmitri Iwanowski, Sergius Winogradsky and M W Beijerinck and Paul Ehrlich. Working principle and applications of light, dark field, phase contrast and electron microscopes (SEM and TEM). Principles of staining -Simple, Gram's and differential staining.

UNIT 2: Microbial Growth, media and Culture Centers

14 Hours

Culture media, nutritional composition of culture media, Natural and synthetic media, a brief account of routine media -basal media, enriched media, selective media with examples. Methods of disinfection: antiseptic, tyndallisation and Pasteurization. Wet and dry methods, UV light, filtration. Microbial growth and measurement. Nutritional types of Microbes-autotrophs and heterotrophs, phototrophs and chemotrophs; lithotrophs and organotrophs. Microbial cultures. Pure culture and axenic cultures, subculturing. Preservation methods-overlaying cultures with mineral oils, lyophilisation. Microbial culture collections and their importance. A brief account on ITCC, MTCC and ATCC.

General structure and classification of Viruses; ICTV system of classification. Structure and multiplication of TMV and Bacteriophage (T2), structure of SARS-COV-2. Significance of viruses and vaccines. Viroids- general characteristics. Prions - general characters and diseases. General characteristics and classification introduction to Bergey's Manual. Archaebacteria and Eubacteria. Ultrastructure of Bacteria; Reproduction in bacteria- asexual method and genetic recombination. Study of *Rhizobium* and its applications. A brief account of Actinomycetes, Mycoplasmas and Phytoplasmas - General characteristics and diseases.

UNIT 4: Fungi, Mycorrhizae and Microbial plant diseases

14 Hours

General characteristics and classification (Alexopoulos classification). Thallus organization, modification of mycelia and nutrition in fungi. Reproduction in fungi (asexual and sexual with specific type study example.). Heterothallism and parasexuality. Type study: Morphology of Rhizopus, Saccharomyces, Penicillium and Puccinia. Life cycle of Puccinia. Economic importance of Fungi. Mycorrhizae types - ecto and endo mycorrhizae, VAM fungi and their significance. Causative organism, symptoms, control measures of Koleroga of Arecanut, Blast Disease of paddy; Black stem rust of wheat; Red rot of sugarcane, Sandal Spike, Citrus Canker, Bunchy top of Banana.

- 1. Ananthnarayan R and Panikar (2020). Textbook of Microbiology. Eleventh edition, Universities Press (India) Pvt. Ltd.
- 2. Arora DR. (2004). Textbook of Microbiology, CBS, New Delhi.
- 3. William CG. (1989). Understanding microbes. A laboratory textbook for Microbiology. W.H. Freeman and Company. New York.
- 4. Dubey RC and Maheshwari DK. (2007). A textbook of Microbiology, S. Chand and Company, New Delhi.
- 5. Dubey RC and Maheshwari DK. (2002). A textbook of Microbiology, S. C. Chand and Company, Ltd. Ramnagar, New Delhi.
- 6. Sharma R. (2006). Textbook of Microbiology. Mittal Publications. New Delhi. 305pp.
- 7. Sharma PD. (1999). Microbiology and Plant Pathology. Rastogi publications. Meerut, India.
- 8. Vasanthkumari R. (2007). A textbook of Microbiology, BI Publications Pvt. Ltd., New Delhi.
- 9. Alexepoulos CJ and Mims CW. (1989). Introductory Mycology, Wiley Eastern Ltd., New Delhi.
- 10. Allas RM. (1988). Microbiology: Fundamentals and Applications, Macmillan publishing co. New York.

- 11. Brook TD, Smith DW and Madigan MT. (1984). Biology of Microorganisms, 4th ed. Eaglewood Cliffts. N.J. Prentice- Hall. New Delhi.
- 12. Burnell JH and Trinci APJ. (1979). Fungal walls and hyphal growth, Cambridge University Press. Cambridge.
- 13. Jayaraman J. (1985). Laboratory Manual of Biochemistry, Wiley Eastern Limited. New Delhi.
- 14. Ketchum PA. (1988). Microbiology, concepts and applications. John Wiley and Sons. New York.
- 15. Michel J, Pelczar Jr.EC and Krieg CR. (2005). Microbiology, Mc. Graw-Hill, New Delhi.
- 16. Powar CB and Daginawala. (1991). General Microbiology, Vol I and Vol II Himalaya publishing house, Bombay.
- 17. Reddy S and Ram. (2007). Microbial Physiology. Scientific Publishers, Jodhpur, 385pp.
- 18. Sullia SB and Shantharam S. (1998). General Microbiology. Oxford and IBH publishing Co. Pvt. Ltd. New Delhi.
- 19. Schlegel HG. (1986). General Microbiology. Cambridge. University Press. London, 587pp.
- 20. Roger S, Ingrahan Y, Wheelis JL, Mark L and Page PR. (1990). Microbial World 5th edition. Prentice-Hall India, Pvt. Ltd. New Delhi.
- 21. Sullia SB. and Shantharam S. (2005). General Microbiology, Oxford and IBH, New Delhi.

I Semester B.Sc. Botany

Core Lab Course Content

(Paper Code) Microbial Diversity and Technology

4 Hours/week

Credits: 2 Total hours: 48

Course outcomes

At the completion of this course, students will be able to

CO1: Equip with microscopy techniques, slide preparation, and micrometry, facilitating the study of bacterial and fungal strains.

CO2: Enhance knowledge about microbial culture media.

CO3: Gain practical skills in experimental design and interpretation.

CO4: Apply the knowledge of economically important microbes for commercial purpose.

List of Experiments

- 1. Safety measures in microbiology laboratory and study of equipment/appliances used for microbiological studies (Microscopes, Hot air oven, Autoclave/Pressure Cooker, Inoculation needles/loop, Petri plates, Incubator, Laminar flow hood, Colony counter, Haemocytometer, Micrometry.
- 2. Preparation of culture media (NA/PDA) sterilization, inoculation, incubation of *E coli / B. subtilis*/ Fungi and study of cultural characteristics.
- 3. Enumeration of soil/food /seed microorganisms by serial dilution technique. Preparation of agar slants, inoculation, incubation, pure culturing and preservation of microbes by oil overlaying.
- 4. Determination of cell count by using Haemocytometer.
- 5. Determination of microbial cell dimension by using Micrometry.
- 6. Simple staining of bacteria (Crystal violet /Nigrosine blue) / Gram's staining of bacteria.
- 7. Isolation and study of morphology of *Rhizobium* from root nodules of legumes.
- 8. Preparation of spawn and cultivation of paddy straw (Oyster) mushroom.
- 9. Study of vegetative structures and reproductive structures of any six of the following: *Phytophthora, Rhizopus, Saccharomyces, Puccinia, Penicillium, (Depending on local availability)*
- 10. Study of Koleroga of Arecanut, Blast Disease of Rice; Black stem rust of wheat, Red rot of sugarcane,
- 11. Study of Sandal Spike, Citrus Canker, Tobacco mosaic virus, Bunchy top of Banana.

12. Visit to water purification units/Composting/ microbiology labs/dairy and farms to understand the role of microbes in day today life. Field study report is to be documented in the practical record only.

- 1. Microbiology: A Laboratory Manual; Authors, James G. Cappuccino, Chad T. Welsh; Edition 11; Publisher, Pearson Education, (2016); ISBN, 0134298594.
- 2. Textbook of Medical Laboratory Technology Ramnik Sood, (2006). Edition1, Jaypee Brothers Medical Publishers, ISBN: 9788180615917.
- 3. Practical Microbiology (PB) by D K Maheshwari and R C Dubey, (2012), S Chand Publishing, ISBN 9788121921534.
- 4. Sharma PD. (1999). Microbiology and Plant Pathology. Rastogi publications. Meerut, India.
- 5. Prescott's Microbiology by Willey, J, M. et al, (2017). Mcgraw Hill publisher.

I Semester B.Sc. Botany

Open Elective Course Content

(Paper Code) Plants for Human Welfare

Credits: 3 Total hours: 42

Course Outcomes

On completion of this course, the students will be able to

- **CO 1.** Enhance knowledge on the economic importance of diverse plants that offer resources to human life.
- CO 2. Identify the plants used as food, medicinal value and also plant sources of different economic value.
- **CO 3.** Comprehend the importance of plants in today's life, conservation, ecosystem and sustainability.
- **CO 4.** Armed with cultivation techniques, pest and disease management, soil fertility enhancement, and genetic engineering for desirable traits yield.

UNIT 1: Cultivated plants, Cereals, Pulses and Millets

14 Hours

Introduction, Origin of Cultivated Plants. Concept of Centers of Origin, their importance with reference to Vavilov's work. Examples of major plant introductions. Crop domestication and loss of genetic diversity (Only conventional plant breeding methods). Importance of plant biodiversity and conservation. Concept of Genetically Modified plants. Wheat and Paddy (origin, evolution, morphology, post-harvest processing & uses). Green revolution. Brief account of millets (mention names) and their nutritional importance. General account of legumes (including chief pulses grown in Karnataka- red gram, green gram, chick pea, soybean). Importance to man and ecosystem.

UNIT 2: Fruits, Beverages, Spices, oils and fats

14 Hours

Introduction, types of fruits - tropical and temperate (with examples), concept of climacteric and non-climacteric fruits. Mango, grapes and citrus (Origin, morphology, cultivation, varieties, processing and value-added products). Tea, Coffee (morphology, processing & value-added products). Spices- introduction. Listing of important spices, their family and parts used, economic importance with special reference to Karnataka. Study of fennel, clove, black pepper and cardamom. Oils and fats- general description, classification, extraction, their uses and health implications; groundnut, coconut, sunflower and mustard (Botanical name, family & uses). Non-edible oil yielding trees and importance as biofuel. Neem oil and applications.

UNIT 3: Cash crops, fibers, drug and essential oils yielding plants

14 Hours

Cash crops - introduction, morphology, new varieties and processing of sugarcane, products and by-products of the sugarcane industry. Natural Rubber –cultivation, tapping and processing. Fibers- introduction, classification based on the origin of fibers; Cotton and jute (origin morphology, processing and uses). Drug-yielding plants: Therapeutic and habit-forming drugs with special reference to *Cinchona*, *Digitalis*, *Aloe vera* and *Cannabis*. Essential

Oils - general account. Extraction methods of sandal wood oil, rosa oil and eucalyptus oil. Economic importance as medicine, perfumes and insect repellents.

- 1. Kochhar, S.L. (2012). Economic Botany in Tropics. New Delhi, India: MacMillan & Co.
- 2. Wickens, G.E. (2001). Economic Botany: Principles & Practices. The Netherlands: Kluwer Academic Publishers.
- 3. Chrispeels, M.J. and Sadava, D.E. (1994). Plants, Genes and Agriculture. Jones & Bartlett Publishers.
- 4. Verma, V. (2009). Textbook of Economic Botany. Tuli offset Printers Pvt. Ltd., New Delhi.
- 5. A Text Book of Modem Economic Botany, (2016). 11th Edition A.V.S.S Sammbamurty and N.S. Subrahmanyam, CBS Publishers & Distributors.

II Semester B.Sc. Botany

Core Course Content

(Paper Code) DIVERSITY OF NON- FLOWERING PLANTS

Credits: 4 Total hours: 56

Course Outcomes:

Upon completion of this course, students will be able to

CO1: Recognize the diversity and affinities among Algae, Bryophytes, Pteridophytes and Gymnosperms.

CO2: Understand the morphology, anatomy, reproduction and life cycle across Algae, Bryophytes, Pteridophytes and Gymnosperms.

CO3: Know the ecological and evolutionary significance.

CO4: Apply laboratory skills and explore non-flowering plants for their commercial applications.

UNIT 1: Algae 14 Hours

Algae: Introduction and historical development in algology. Distribution of Algae. General characteristics, classification of algae by Fritsch. Diversity- habitat, thallus organization, and alternation of generation in Algae. Morphology and reproduction of *Nostoc*, *Oedogonium*, *Chara, Sargassum and Polysiphonia*. Economic importance of algae: Algal products- Food, carrageenin, alginate, fodder, diatomite, fertilizers, medicines. Algal blooms and toxins.

UNIT 2: Bryophytes 14 Hours

General characteristics and classification (Roth Maler) of Bryophytes. Morphology, anatomy, reproduction of *Riccia*, *Anthoceros*, and *Funaria*. Ecological and economic importance of Bryophytes.

UNIT 3: Pteridophytes

14 Hours

General characteristics and classification (Smith); Morphology, anatomy, reproduction in *Selaginella, Pteris* and *Marsilea*. Brief account of heterospory and seed habit. Stelar evolution in Pteridophytes. Affinities and evolutionary significance of Pteridophytes. Ecological and economic importance.

UNIT 4: Gymnosperms

14 Hours

General characteristics. Distribution and classification of Gymnosperms (Sporne). Study of Morphology, anatomy and reproduction in *Cycas, Pinus* and *Gnetum*. Affinities and evolutionary significance of Gymnosperms. Economic importance of Gymnosperms - food, timber, industrial uses and medicines.

- 1. Chopra, G.L. (2012). A textbook of Algae. Rastogi & Co., Meerut, Co., New Delhi, Depot.
 - Allahabad.
- 2. Johri, Lata and Tyagi, (2012). A Textbook of, Vedam e Books, New Delhi.
- 3. Sharma, O.P. (1990). Textbook of Pteridophyta. McMillan India Ltd. New Delhi.
- 4. Sharma, O.P. (1992). Textbook of Thallophytes. McGraw Hill Publishing Co. New Delhi.
- 5. Sharma, O.P., (2017). Algae Singh-Pande-Jain 2004-05. A Text Book of Botany. Rastogi Publication, Meerut.
- 6. Simpson M.G. (2019). Plant Systematics, III edition. Academic Press.
- 7. Sambamurty, A.V.S.S. A Textbook of Algae. I.K. International Private Ltd., New Delhi.
- 8. Agashe, S.N. (1995). Paleobotany. Plants of the past, their evolution, paleoenvironment and Allied plants. Hutchinson & Co., Ltd., London.
- 9. Anderson R.A. (2005). Algal culture Techniques, Elsevier, London. Publication, Application in exploration of fossil fuels. Oxford & IBH., New Delhi.37
- 10. Eams, A.J., (1974). Morphology of vascular plants Lower groups. Tata Mc Grew-Hill Publishing Co. New Delhi, Freeman & Co., New York.
- 11. Fritze, R.E. (1977). Structure and reproduction of Algae. Cambridge University Press.
- 12. Goffinet B and Shaw A.J. (2009). Bryophyte Biology, 2nd ed. Cambridge University Press, Cambridge. Gymnosperms
- 13. Srivastava, H N, (2003). Algae Pradeep Publication, Jalandhar, India.
- 14. Kakkar, R.K. and B. R. Kakkar (1995). The Gymnosperms (Fossils and Living) Central Publishing House, Allahabad.
- 15. Kumar H. D., (1999). Introductory Phycology, Affiliated East-West Press, Delhi.
- 16. Lee, R.E., (2008). Phycology, Cambridge University Press, Cambridge. 4th edition. McGraw Hill Publishing Co., New Delhi.
- 17. Parihar, N.S. (1970). An Introduction to Embryophyta. Vol. I. Bryophyta. Central Book, Allahabad.
- 18. Parihar, N.S. (1976). An Introduction to Pteridophytes, Central Book Depot, Allahabad.
- 19. Parihar, N.S. (1977). The Morphology of Pteridophytes. Central Book Depot., Allahabad. Press, Cambridge.

- 20. Rashid, A. (1998). An Introduction to Pteridophyta. II ed., Vikas Publishing House, New Delhi.
- 21. Smith, G.M. (1971). Cryptogamic Botany. Vol. II. Bryophytes & Pteridophytes. Tata McGraw Hill Publishing, New Delhi.
- 22. Smith, G.M. (1971). Cryptogamic Botany. Vol. I Algae & Fungi. Tata McGraw Hill Publishing. New Delhi.

II Semester B.Sc. Botany

Core Lab Course Content

(Paper Code) DIVERSITY OF NON- FLOWERING PLANTS

4 Hours/week

Credits: 2 Total hours: 48

Course Outcomes:

Upon completion of this course, students will be able to

CO1: Enhance the knowledge of anatomical organization and functioning in higher plants.

CO2: Gain knowledge of taxonomy of non-flowering plants enabling the significance of evolution.

CO3: Apply laboratory skills of non-flowering plants for commercial purpose.

CO4: Understand the structural differences between non-flowering and higher plants.

List of Experiments:

- 1. Study of morphology, systematic position and reproductive structures in *Nostoc*, *Oedogonium*.
- 2. Study of morphology, systematic position and reproductive structures in *Chara*.
- 3. Study of morphology, systematic position and reproductive structures in Sargassum.
- 4. Study of morphology, systematic position and reproductive structures in *Polysiphonia*.
- 5. Study of morphology, systematic position and reproductive structures in *Riccia/ Anthoceros*. (Any one locally available moss).
- 6. Study of morphology, systematic position, anatomy and reproductive structures in *Selaginella*.
- 7. Study of morphology, systematic position, anatomy and reproductive structures in *Pteris*.
- 8. Study of morphology, systematic position, anatomy and reproductive structures in *Marsilea*.
- 9. Study of morphology, systematic position, anatomy and reproductive structures in *Cycas*.
- 10. Study of morphology, systematic position, anatomy and reproductive structures in *Pinus*.
- 11. Study of morphology, systematic position, anatomy and reproductive structures in *Gnetum*.
- 12. Visit to algal cultivation units/lakes with algal blooms/Fern house/ Nurseries/Geology Museum/lab to study plant fossils and the report is to be documented in the practical record.

- 1.Parihar, N.S. (1977). The Morphology of Pteridophytes. Central Book Depot., Allahabad. Press, Cambridge.
- 2. Smith, G.M. (1971). Cryptogamic Botany. Vol. II. Bryophytes & Pteridophytes. Tata McGraw Hill Publishing, New Delhi.
- 3. Sharma, O.P., (2017). Algae Singh-Pande-Jain 2004-05. A Text Book of Botany. Rastogi Publication, Meerut.
- 4. Goffinet B and Shaw A.J. (2009). Bryophyte Biology, 2nd ed. Cambridge University Press, Cambridge. Gymnosperms.
- 5. 16. Lee, R.E., (2008). Phycology, Cambridge University Press, Cambridge. 4th edition. McGraw Hill Publishing Co., New Delhi.

II Semester B.Sc. Botany

Open Elective Course Content

(Paper Code) PLANT PROPAGATION, NURSERY MANAGEMENT AND GARDENING

Credits: 3 Total hours: 42

Course Outcomes:

Upon completion of this course, students will be able to

CO1: Advance knowledge of gardening, cultivation, multiplication, raising of seedlings of garden plants.

CO2: Expand knowledge of new and modern techniques of plant propagation.

CO3: Enhance interest in nature, plant life and practice sustainable use of plant resources.

CO4: Application in floriculture, agriculture and medicine fields.

UNIT 1: Nursery 14 Hours

Definition, objectives and scope and general practices and building up of infrastructure for nursery, planning and seasonal activities. Planting - direct seeding and transplants, Soil free/soilless/ synthetic growth mediums for pots and nursery. Vegetative propagation: Airlayering, cutting, selection of cutting, collecting season, treatment of cutting, rooting medium and planting of cuttings. Hardening of plants. Green house, mist chamber, shed roof, shade house and glass house.

UNIT 2: Seed 14 Hours

Seed: Structure and types, Seed dormancy; causes and methods of breaking dormancy. Seed storage- Seed banks, factors affecting seed viability, genetic erosion. Seed production technology- Seed testing and certification, marketing procedures.

UNIT 3: Gardening 14 Hours

Gardening: Definition, objectives and scope. Different types of gardening - landscape and home/terrace gardening, parks and its components. Plant materials and design. Computer applications in landscaping, Gardening operations: soil laying, manuring, watering, management of pests and diseases and harvesting. Developing and maintenance of different types of lawns. Bonsai technique.

- 1. Agrawal, P.K. 1993. Handbook of Seed Technology. New Delhi, Delhi: Dept. of Agriculture and Cooperation, National Seed Corporation Ltd.
- 2. Bose T.K., Mukherjee, D. 1972. Gardening in India. New Delhi, Delhi: Oxford & IBH Publishing Co.
- 3. Jules, J. 1979. Horticultural Science, 3rd edition. San Francisco, California: W.H. Freeman and Co.

- 4. Kumar, N. 1997. Introduction to Horticulture. Nagercoil, Tamil Nadu: Rajalakshmi Publications.
- 5. Musser E., Andres. 2005. Fundamentals of Horticulture. New Delhi, Delhi: McGraw Hill Book Co.
- 6. Sandhu, M.K. 1989. Plant Propagation. Madras, Bangalore: Wile Eastern Ltd.

ASSESSMENT CRITERIA

Theory: 60:40; Practicum: 50:50 converted as 25+25=50

1. Ratio of weightage (marks) between Internal & End Semester Examinations for

THEORY: 60:40

THEORY INTERNAL COMPONENT: 40

• Two internal tests: $10 \times 2 = 20$

• Assignment: **05**

• Attendance: 05

• Continuous Unit wise tests (objective/MCQ): 05

• Group projects:05

2. Practicum component marks: 50

The internal component of practicum:50 (converted to 25)

Internal:

• Continuous Assessment of all practical experiments: 15

• Attendance: 05

• Model practical Test: 20

• Maintenance of Records: **05**

• Viva: 05

End semester Practicum: 50 (converted to 25)

Theory End Semester Examination Question Paper Pattern.

Time 2.5 hours

End Semester Theory Examinations will be common for all science departments.

The duration of the examination is **2.5** hours carrying **60 marks**.

The question paper is divided into Part-A, Part - B, and Part C.

Part –A -Objective type carrying from each unit - 20 marks.

Part-B - Analytical questions carrying from each unit - 20 marks

Part –C- Descriptive answer for 20 marks.

Question Paper Pattern Sample

I. Section-A -Any 10 out of 12 2 x 10=20 marks. Q. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

II. Section-B -Answer any 4 out of 6 5 x 4=20 marks Q. 1, 2, 3, 4, 5, 6

III. Section-C -Answer any 2 out of 4 $\,$ 10 X 2 = 20 marks Q. 1, 2, 3, 4

Paper Code		Reg. No.:							
	St Aloysius (Deemed to be University)								
Mangaluru 575003-India									
End Semester Exam – Month Year									
B.Sc Semester – I									
Paper – I									
Paper Title									
	Time: 2½ hrs. Max Marks: 60								
		aw Diagrams wherever necessary.							
Answei	r all three	sections- A, B, and C.							
1	TO 60 /A	SECTION-A	(2.10.20)						
1.	Define/A	nswer any TEN of the following:	(2x10=20)						
a) b)									
c)									
(d)									
e)									
f)									
g)									
h)									
i)									
j)									
k)									
1)									
	1	SECTION – B							
	Answer 2	any FOUR of the following	(5x4=20)						
1.									
2.									
3.									
4. 5.									
6.									
0.		SECTION – C							
	Answer a	any TWO of the following	(10x2=20)						
1.			(9)						
2.									
3.									
4.									

Practical End Semester Examination Question Paper Pattern.

Time 3 Hours

Total -25 Marks

Q1. Major Experiment A- Experiment to be conducted and result to be report	ed
	10 Marks
Q2. Minor Experiment B- Experiment to be conducted and result to be report	ed
	6 Marks
Q3. Identification and Comment of Spotters C, D and E	x 3 = 09 Marks